

Some unsaturated soil-related aspects in railway substructures

Yu-Jun CUI

Laboratoire Navier - Ecole des Ponts ParisTech

Acknowledgements

Ecole des Ponts ParisTech (ENPC):

- Pr Pierre Delage
- Dr Anh Minh Tang
- Dr Trong Vinh Duong
- Dr Jean-Paul Karam
- Dr Viet Nam Trinh
- Dr Yang Chao
- Dr Jean-Claude Dupla
- Dr Jean Canou

The French Railway Company (SNCF):

- Mr Jean-Marc Terpereau
- Mr Gilles Marchadier
- Ms Yahel Szerman
- Mr Nicolas Calon
- Mr Alain Robinet

The French Railway network

- Most of railway structures were constructed in late XIX century
- First LGV was constructed in 1970

The network has not changed much since then – 94% conventional lines over 32 000 km

Railway network in late XIX century

Current railway network

Problems related to non-saturation

> New lines:

- AMC LOADING AMIC LOADING ines: Special sub-grade soils such as • Collapsible soils Swelling soils
- > Convertion
- Sub-grade soils

Hydro-mechanical behaviour of interlayer soils

• • • Outline

- Introduction
- Case of loess along northern TGV line
- Case of marl along Mediterranean TGV line
- Interlayer soil in the sub-structure of conventional lines
- Concluding remarks

Locations of the case studies

Case of loess along northern TGV line

Geotechnical properties

Soil	S1 (1.20m)	S2 (2.20m)	S3 (3.50m)	S4 (4.90m)
	()	()	(0.000,000)	(,
ρ _d (Mg/m³)	1.52	1.39	1.54	1.55
C _{ca} (%)	5	6	15	9
% < 2 (μm)	20	16	16	18
w _p	21	22	20	21
lp	9	6	6	9
Suction s ₀ (kPa)	20	34	28	14

 $\bullet \bullet \bullet$

12/36

Observation at SEM

Soil 2.20 m

Liquefaction resistance

15/36

Liquefaction resistance - (soil 2.20 m)

16/36

Case of marl along Mediterranean TGV line

Damage to the drainage system

Chabrillan site; line constructed in 1998; damage observed in 2001

Plan of investigation boreholes and the excavation in 2003

Profiles of boreholes

Interlayer soils

Conventional railway substructures

- Were initially built with ballast and sub-grade without separation layer
- > Complex substructure :
 - The interlayer was created mainly by naturally mixing ballast and sub-grade
 - Variability of interlayer soils depending on the nature of sub-grade
- Three functions expected for the interlayer when innovating the lines :
 - Separation
 - Support
 - Drainage

Function of interlayer

- Separation
- Support
- Track-bed drainage

Sleeper

Ballast

Interlayer

Water

+

Fine particles

Sub-grade

Mud pumping zone

Rail

Function of interlayer

- Separation
- Support

• Track-bed drainage

Function of interlayer

- Separation
- Support
- Track-bed drainage

• • • Experimental devices

o Large-scale triaxial cell

• • • Experimental devices

o Large-scale infiltration column

Soil specimen:

- D = 300 mm
- H = 600 mm

Instrumentation:

- 5 TDR for volumetric water content
- 5 tensiometers for soil suction

29/36

Soils' sampling

Sample preparation in laboratory

Soil dry density:

- In situ: 2.40 Mg/m³

- Laboratory: 2. 00 Mg/m³

(compaction in layers)

Water retention property

Hydraulic conductivity vs suction, fines, macropores

Permanant strain vs water content and fine fraction

Concluding remarks

- Unsaturated soil mechanics is involved in both new and conventional lines
- New lines Special sub-soils
 - Loess: collapse upon wetting; liquefaction in saturated state, and the liquefaction resistance can be increased significantly with a slight decrease of water content
 - Marl: swelling upon water infiltration; excavation or unloading is the origin of swelling; possibility to estimate the time needed to reach a new equilibrium
- Conventional lines Interlayer soils
 - Governing role of fine fraction for the hydraulic conductivity of interlayer soils
 - Effects of water content and fine content to be accounted for together when analyzing the mechanical behavior